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ABSTKACT

We analyse the spatial clustering properties of a new catalogue of very rich galaxy clus-

ters selected from the APM Galaxy Survey. These clusters are of comparable richness

and space density to Abell Richness Class >_ 1 clusters, but selected using an objective

algorithm from a catalogue demonstrably free of artificial inhomogeneities. Evaluation

of the two-point correlation function _cc(r) for the full sample and for richer subsam-

ples reveals that the correlation amplitude is consistent with that measured for lower

richness APM clusters and X-ray selected clusters. We apply a maxmimum likelihood

estimator to find the best fitting slope and amplitude of a power law fit to _cc(r), and

to estimate the correlation length r0 (the value of r at which _cc(r) is equal to unity).

For clusters with a mean space density of 1.6 x 10 -6 h3Mpc -3 (equivalent to the space

density of Abell Richness _> 2 clusters), we find r0- 21.3+_!a 1 h-lipc (95% confi-

dence limits). This is consistent with the weak richness dependence of _cc(r) expected

in Gaussian models of structure formation. In particular, the amplitude of _c_(r) at all

richnesses matches that of _¢_(r) for clusters selected in N-Body simulations of a low

density Cold Dark Matter model.

Key words: Galaxies " Clustering ; Large-scale structure of the Universe ; Cosmology.

1 INTRODUCTION

Rich clusters of galaxies have been used by many authors

as tracers of the large-scMe structure of the Universe. Most

analyses to date have relied on the cluster catalogue of Abel]

(1958) (and later Abel], Corwin & Olowin 1989 (ACO)). An-

gular clustering statistics for Abel] clusters were calculated

by Bogart 8z Wagoner (1973) and Hauser K: Peebles (1973)

and more recently, various redshift surveys of Abell clusters

have been used to estimate the two point chster correlation

function _cc(r) (eg. B ahcall & Soneira 1983, Klypin & Kopy-

lov 1983, Postman, Huchra K: Geller 1992, Peacock & West

1992). From these studies, the two point correlation function

for clusters has been found to be consistent in shape with

the power law form measured for galaxies,

= . (1)

with a similar value of the power-law index 7 "_ 2 but with

a higher amplitude r0. For example, Peacock & West 1992

find r0 = 21 h-lMpc (where H0 = 100hkm s -1) for AbeU

clusters of richness R _> 1 whereas r0 is around 5 h -1Mpc

for galames (see eg. Davis & Peebles 1983). Many authors

have found, however, that there is much evidence to suggest

that the Abell catalogue, selected by eye from unmatched

photographic plates, is affected by inhomogeneities in clus-

ter selection which result in articifial clustering (Sutherland

1988; Sutherland & Efstathiou 1991; Dekel et al. 1989; Pea-

cock _ West 1992).

New results on the distribution of clusters have been

obtMned from an automatica_y selected catalogue based

on the APM Galaxy Survey (Dalton et al. 1992, hereafter

DEMS92), and from smaller samples of clusters selected

from the Edinburgh-Durham GMaxy Catalogue and from

the ROSAT X-ray cluster survey (Nichol et al. 1992; Romer

et al. 1994). The amplitude of _cc measured from these stud-

ies is gener_y lower than for the Abell samples, so that

13 h -1Mpc <_ r0 _< 16 h-lMpc. However, it has been ar-

gued that the clustering seen in the automated surveys is

dominated by poor clusters, and that the results may be

compatible with the higher values of r0 measured for R _> 1

AbeU clusters, provided that there is a strong dependence

of the correlation length on cluster richness. Bahcall & West
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(1992) and Bahcall & Cen (1992) argue that the Abell data

are consistent with a linear relation between r0 and mean

intercluster separation dc (de = n-[ 1/3 where nc is the mean

space density) so that

r0 = 0.4de. (2)

The evidence for this scaling relation, especially at high val-

ues of de comes exclusively from estimates of the correlation

functions of rich Abell clusters (eg. Peacock & West 1992).

The validity of equation (2) thus depends critically on the

uniformity of the Abell catalogue, particularly at richnesses

R > 1. The main aim of this paper is to test the scaling

relation (2) using an independent sample of rich clusters of

galaxies selected from the APM galaxy survey.

Croft & Efstathiou (1994) have shown that the ampli-

tude of the cluster correlation function is is predicted to vary

only weary with cluster space-density for a range of Cold

Dark Matter (CDM) models. The existing data for APM

clusters (Dalton et al. 1994a) are in good agreement with

these predictions, but as the clusters are of relatively low

richness and hence low dc they are also consistent with the

relationship given in Equation 2. In the study presented here

we use a new extension of the APM cluster survey to test

the behaviour of ,_,: for richer clusters.

The layout of this: paper is as follows. We describe the

cluster sample and its relationship to the samples of DMton

et al. (1994a) and Dalton et al. (1994b) in Section 2. In Sec-

tion 3 we present the correlation function for the new clus-

ter sample and for various subsamples . We use a maximum

likelihood estimator to fit a power law to the correlation

function and investigate how the fitted parameters change

with cluster richness. In Section 4 we compare our results

with other data samples and with N-body simulations of

cosmological models. We summarise our findings in Section
5.

2 THE CLUSTER SAMPLE

D EMS presented a summary of the algorithm used to se-

lect galaxy clusters from the APM survey. In Dalton et al.

(1994a) the selection procedure was changed slightly in or-

der to increase the volume av_able to the survey. A det_ed

description of the selection procedure and a discussion of

the effects of changing the various selection parameters is

presented in Dalton et al. (1997). Here we use the frame-

work discussed in that paper to briefly describe changes to

the selection procedure which increase our sensitivity to rich

clusters at the expense of incompleteness at low richnesses.

The effective depths of the cluster samples selected from

the APM survey are limited by the definition of the cluster

richness, T_. This is defined to be the weighted number of

galaxies in the magnitude range [mx- 0.5, mx + 1.0] above

the mean background count in the range [mx- 0.5, mx +

1.5]. Here mx is defined as the magnitude of the galaxy

for which the weighted count above background exceeds

X = 7£/2 for the catalogue of DEMS92 and Dalton et al.

(1994b) . The depth of the cluster catalogue defined in this

way is fixed by the magnitude limit of the survey (b j=20.5),

so mx is constrained to be brighter than bj = 19.0. In Dal-

ton et al. (1994a) we created a catalogue of greater depth

by changing the background slice to [rex- 0.5, mx + 1.0],

and redefining X to be 7_/2.1. By combining this new cata-

logue with that of DEMS92 using a richness transformation

calibrated from clusters that appear in both catalogues we

created an extended sample of 364 clusters with APM rich-

ness _ _> 50 (sample B of Dalton et al. 1994a). We will

use results from this comparatively low richness sample in

comparisons with measurements of clustering made from our

new rich sample.

The new rich sample was created by further extend-

ing our survey by increasing the limiting magnitude of the

galaxy catalogue to b5 = 21.0. The APM photometry is

complete to this limit but the fraction of objects which are

mis-classified as stars rises sharply. However the distribu-

tion of stellar objects fainter than b j=20.5 is smooth on

the scale of the counting annulus we use to determine the

backround correction, and so does not affect our ab_ty to

select clusters. We changed our cluster selection parame-

ters to X = 7Z/3 and a richness counting slice (count and

background) of [mx - 0.5, mx + 0.7] to optimise the depth

increase gained by using the extra 0.5 mag of galaxy data.

We scaled the richness counts in this catalogue by matching

to the sample A catalogue in the same way as for sample S

(see Dalton et al. 1994a) , and then targeted all previously
unidentified clusters with _ > 80. In two and a half clear

a

nights at the Anglo-Austrafian Telescope (AAT) we were

able to obtain unambiguous redshifts for 100 new clusters.

The redshifts were obtained using the cross-correlation tech-

nique of Tonry & Davis (1979). The procedure is described

in detail in Dalton et al. 1994b.

To choose which clusters to observe, the catalogue was

sprit into different richness subsets and these were each sprit

further into 4 bands by RA. We were able to complete obser-

vations of the clusters in _ subsets except for the poor clus-

ters with RA > 2 hrs. As the efficiency of detection in our

new catalogue is lowest for the poorest clusters (7_ > 80, due

to the change in selection parameters), most of the poor clus-

ters in sample C are those from the previous catalogue. Be-

cause of this, we limit our final statistical sample to nearby

clusters in order to have an essentially complete sample. We

choose to limit the sample to those clusters with a redshift

cz < 55000km s -1. Above this redshift the overall efficiency

of cluster detection appears to fall rapidly as we will show
below.

Combining the cluster data with sample B gives a sam-

ple of 165 clusters with _ > 80 which we shall refer to as

sample C. The redshift distribution of sample C is shown

in panel (a) of Fig. 1, together with smoothed distribution

obtained by convolving the histogram with a Gaussian of

width 8000km s -1. The selection function also shown (nor-

realised to unity at the peak)suggests that incompleteness

in the deep sample starts to become important at high red-

shift (cz> 55000km s -1). The peak in the n(z) distribution

at cz = 60{}00km s -1 corresponds to a visible feature in

the APM galaxy map at a = 235,5 = -20 °, and appears

to be present in the ACO catalogue in the form of a large

number of distance class 6 clusters without published red-

shifts. There is also a lack of clusters in sample C at low

redshifts (cz <_ 10000kin s -z). This is mainly a consequence

of clusters appearing too large on the plane of the sky for se-

lection using percolation (Dalton et al. 1997). There also do

not appear to be any nearby very rich clusters in other sur-

veys which overlap with the APM such as the SSRS galaxy
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Table 1. The space density of clusters

Sample Nc CZmin CZmax no( h3Mpc -3)

B 7_ > 50 362 5000 55000 3.4 × lO -5
B T_ > 70 114 5000 55000 9.0 × 10 -6

C 7_ > 80 163 10000 85000 5.4 × 10 -6

C T_ > 90 79 10000 85000 3.1 × 10-6

C T_ > 100 37 10000 85000 1.8 × 10-6

C T_ > 110 18 10000 85000 1.6 × 10-6

i | II ! I | 1

I (a) Sample C (_ __80)

II -- Nz
" Nz smoothedi' _Hi-1 [-] __. Selection

tL_

o_ LI (b) Sample B (_ _50).

__.

0

0 2x 10 4 4x 10 4 6x 10 4 8x 10 4 I0 5

cz (kms-I)

Figure 1. (a) The redshift distribution of Sample C, the new rich

cluster sample. The thick fines are a histogram of the distribu-

tion of cluster redshifts, a smoothed version of which (see text) is

shown by the thin solid line. The dashed line represents the selec-

tion function for the sample, obtained by dviding the smoothed

distribution by the appropriate volume element .(b) For compar-

ison, we plot dNz for the survey of the extended sample of 364

clusters (Sample B) of Dalton et al. 1994a

redshift survey (da Costa et al. 1994). This is a very small

fraction of the volume of the rich cluster survey and in any

case, we choose to fimit the rest of our analysis to the clus-

ters with cz > 10000km s -1. The redshiff distribution for

sample B is also shown, for comparison, in panel (b) of Fig

1. The smoothing of the distribution in this case was carried

out using 4000km s -1 Gaussian because of the higher space

density of objects.

We have estimated the mean space density of clusters in

this sample, using Equation 3 of Efstathiou et al. (1992) and

the results are given in Table 1. We have also applied suc-

cessively higher richness bounds to create subsamples with

lower space densities, the estimated space densities as listed

in Table 1. We also list the space density of sample B and a

subsample with T_ >_ 70.

3 CLUSTER CORRELATIONS

We estimate the redshift-space correlation functions for the

samples in Table 1 by cross-correlating with a random cat-

alogue and using the estimator

_(_) DO
= 2f_-_ - 1, (3)

where DD and DR are the number of cluster-cluster pairs

and the number of cluster-random pairs respectively in each

bin centred on s. The parameter f is the ratio of the number

of random points to the number of clusters in the sample.

In each case we use 20,000 points distributed within the

survey boundaries and with the same redshift distributions

as the smoothed distributions shown in Figure 1. As stated

in section (2), we present results for the clusters with cz <_

55000km s -1 in order to be minimise any effects that are

due to uncertainty in the selection function at high redshift.

This being the case, we have also studied the clustering of

the full sample and in all cases find the measurements to lie

within l_r of the cz <_ 55000km s -1 sample results.

We also use the estimator of Hamilton (1993):

_c_(s) = 4 (DD)(RR) _ 1, (4)
(DR) 2

which is less affected by uncertainties in the selection func-

tion for _ < 1.

To test the dependence of the correlation function on

cluster space density we estimate _c(r) for subsamples with

7_ > 90 and R > 100. In Figure 2 we show the correlation

functions for the full sample and for these subsamples. We

note that for the 7_ > 100 clusters each point is within

1cr of zero. A least-squares fit to the data (using estimator

(3)) for T_ > 80 yields 7 = 2.0 + 0.4 and A = 102"4+°44

where A = r_, and the quoted errors are l_r. This gives r0 =

16.5 h -1Mpc. If the slope is constrained to be 7 = 2.0 we

find r0 = 16._+r.0 h -1Mpc where the errors are cMculated
_'--6.0

from the 5 percentile points of the X9 distribution. The best

fit power law for the R >_ 90 subsample is steeper, with

3' = 2.8 4- 1.0, A = 103"8+i°. If 7 for this subsample is

constrained to be 2.8, then we obtain r0 19 l+s-0 h-1Mpc.
----- "_--7.5

The fit for R > 80 is shown as the dashed line in Figure

2. The data for the R > 100 and T_ > 90 sample appear to be

in reasonable agreement with the T_ >_ 80 sample. We have

plotted the predictions of equation (2) for the correlation

functions of the different samples. Most of the points lie

below the corresponding prediction. We therefore conclude

that the correlation amplitude isnot strongly dependent on

the cluster richness.

3.1 A maximum likelihood estimator of 7 and r0.

As we are interested in the behaviour of ro as a function

of cluster richness, we would like to be able to estimate its

value and error bounds in the most direct way possible. Bin-

ning the data introduces uncertainties, as the value of _(r)

can depend on the binning interval and the position of bin

centres (in log or linear space). We circumvent these prob-

lems by maximising the likelihood that a power law form

for _(r), as in equation (1) will produce the observed set of

pair separations. In this way, we can find confidence limits

on the two parameters 7 and r0 , even for small numbers of

clusters.
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Figure 2. The two-point correlation function for the three sub-

samples of clusters from sample C, as discussed in the text. The

estimator of equation (4) was used to calculate the sold sym-

bols and equation (3) for the open symbols (which have been

displaced to the left slightly to make the error bars visible).

The dashed line represents the best fit to the data for 7¢ > 80,

_cc = (s/16.5 h -1Mpc) -2"°. The dotted lines show the prediction
of equation (2) for the power-law fits to the correlation function

of each of the sub-samples.

To construct our estimator, we need to find the pre-

dicted probability distribution of cluster pairs for each value

of 7 and r0. We deal with the mask and selection function

in the usual way by creating a catalogue of random points

with the same boundaries and selection function as the clus-

ter catalogue in question. We then calculate the separations

of all the cluster-random pairs and bin them in r. The bin

width can be made arbitrarily small as long as number of

points in the random catalogue is increased accordingly. In

this case we use 100000 random points in the catalogue and

200 bins in the interval 0- 100 h -1Mpc. If the number of

cluster-random pairs in an interval dr is g(r)dr, then the pre-

dicted mean number of cluster-cluster pairs in that interval

is h(r)dr where

h(r)dr -/(1 -t- _cc(r))g(r)dr, (5)

f is the number of clusters divided by the number of random

points, and _cc(r) has the power law form given by Equation

1. We can then use the separations (ri) of all the (g) cluster-

cluster pairs to form a likelihood function £./: is defined as

the product of the probab_ties of having exactly one pair

in the interval dr at each of the pair separations ri of the N

pairs and the probabilty of having zero pairs in all the other

differential elements of r. This is for all r in a chosen range

(say r_ to rb), in our case the range of values for which _¢_(r)

can be reasonably expected to have power taw behaviour. To

find the likelihood, we assume Poisson probabilties, so that

(see also Marshall et al. 1983):

N

=
i j¢i

(6)

where tt = h(r)dr, the expected number of pairs in the in-

terval dr, and the index j runs over all the elements dr in

which there are no pairs. We then define the usual quan-

tity S = -2 In £: and drop all terms independent of model

parameters, so that

rb NS = 2 h(r)dr -- 2 Eln(h(r_)). ..... (7)
i

The best fit values of r0 and 7 are obtained by

minimising S, with confidence levels defined by As =

S(rbest,')'best)- S(r0,7), assuming that As is distributed

with a X 2 distribution . These confidence limits are likely to

be underestimates, as the assumption of Poisson statistics

assumes that all pairs are independent of each other. It may

be possible to incorporate the effects of higher order corre-

lations into the likelihood by using a scaling model for the

three point and higher correlation functions (see e.g. Peebles

1980). This would result in more accurate error bars. How-

ever, we can use N-body simulations to give us an idea of the

real errors. Croft K: Efstathiou (19:94) compared error bars

on the individual points obtained using Poisson statistics

with the scatter between results for different simulated clus-

ter surveys. In that case, the ensemble errors, which include

the additional effects of cosmic variance were between 1.3

and 1.7 times larger than the Poisson errors. We expect the

errors computed from our likelihood analysis to be underes-

timates by roughly the same factor. We check here whether

this is the case by using large box size N-body simulations

(see Section 4) to make simulated cluster catalogues with

the same angular shape and selection function as sample C

and richer subsamples selected from it (see Section 3). We

have done this for the low density CDM model (see Sec-

tion 4) for which 10 simulations are available. In Table 2 we

present the values of re and 7 and their 1_ confidence inter-

vals ((br0)l and (5_)l) obtained by applying the maximum

likelihood estimator to the simulated catalogues. Also shown

is the ratio of these errors to the ensemble errors (_r(r0) and

_r(7)). From these results we can see that our expectations

are approximately correct and that the likelihood errors are

underestimates by between 1.1 and 2.1. We can also see that

the Poisson errors are closer to the real errors when the num-

ber of clusters is small. Our estimates of the error bars for

the richest subsamples of clusters should therefore be the

most accurate.

3.2 7 and r0 from APM clusters and the richness

dependence of r0.

We apply the estimator described above to the catalogue C

subsample of 110 rich APM clusters with cz < 55000km s -1

as well as subsamples with varying lower richness bounds.

From consideration of the plot of _cc(r) in bins for the

full sample, as well as the results for sample B of Dal-

ton et al. 1994a , we decide that _¢_(r)can probably be

fitted to a power law over the range r_ = 2 h-lMpc to

rb = 70 h-IMpc. Varying these limits does not greatly af-

fect the results, although if rb is increased to much over
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Table 2. Errors estimated from the likelihood distribution com-

pared to the scatter between 10 simulations of a low density CDM

universe. The errors on -y and r0 are the average of the la confi-

dence intervals ( (hr0)l and (5_)z) obtained by applying the maxi-

mum likelihood method to 10 simulated catalogues. The standard
deviations of the measurements taken from the simulated cata-

logues are denoted by at0 and a-r.

h-1Mpc h- 1Mpc

dc ro 4" la (hrO)l/cr(ro) "y 4- 1cr (5.r)i/a(.y)

q7+0.2057 17.__19+1"5.6 0.48 1.,,._0.2 0 0.76
1+2.869 18.._3.4 0.60 1 Qq-l-0.36 0.90"vv--0.36

1.q ,)+5.279 .... -6.7 0.88 1 9a+o.7o 0.93" "--0.73

70--80 h -1Mpc, the fitted power law steepens slightly, prob-

ably due to a break in _cc(r).

We also apply the estimator to sample B, the results

for which are shown in the first panel of Figure 3. In this

_--- 12+0"16 wherecase, we find r0 = 14._+0-s.__1.0h-1Mpc and 7 2. _-0.14

the errors indicate the 95% confidence bounds on each pa-

rameter individually. The contours on the plot show the

joint confidence bounds at levels of 68%, 95% and 99.7%.

If we choose to constrain 7 = 2.13 and find the maxmi-

mum likelihood value of r0 in one dimension we also get

r0 = 14-2+-°'s.0 h-iMP c at 95% confidence. The X 2 fits to the

binned _(r) give 7 = 2.n_+0.20 (2cr errors). If the slope isvv--0.20

constrained to have this value, then from the binned data

r0 = la:.o_2.25_+2.sh-lMpc (Dalton et al. 1994a). The errors

on r0 obtained from the binned data are therefore a factor

of 2 larger than the errors from the maxmimum likelihood

technique.

We have investigated a few possible reasons for this dis-

crepancy. The main reason appears to be an anomalously

low X 2 for the power law fit. Fitting to the 7 bins above

2 h-lMpc we find X2 = 1.7, which should only occur _ 10%

of the time. The binned data for the richer subsamples have

more normal values of X 2 and errors much closer to the max-

imum likelihood values. In discussing our results we will con-

centrate our attention on the fit parameters derived using

the maximum likelihood method.

We have applied the maximum likelihood method to a

subsample of clusters from sample B with T¢ >_ 70, with the

results shown in Figure 3(b). These clusters have a mean

separation d_ = 48 h -i Mpc and have a slightly larger value

of ro = 16.6 4-2.6 h -1Mpc. We tabulate the best fit param-

eters 7 and ro for this and all the other cluster samples in

Table 3. We also present the 1or and 2or confidence limits on

each parameter taken individually.

The results for sample C and subsamples of higher rich-

ness are shown in Figure 3(c)-(f). These subsamples are the

same as those used in calculating the binned correlation

functions plotted in Figure 2, with the addition of a sub-

sample of APM clusters with T¢ >_ 110. The APM 7_ > 110

clusters have a similar space density to Abell R _ 2 clusters

(see e.g. Peacock 8z West 1992). We also plot a dashed line

showing the relation r0 = 0.4de of Bahc_ & West (1992).

We can see from the contour plots that there is a slight

anticorrelation of r0 and 7, so that lower values of r0 would

result in a steeper slope for _¢(r). As the errors are large, the

value of 7 = 2.1 obtained for sample B with 364 clusters is

O
,_- oD

¢9
mU

' I

. APM

-k APM92

& EDCC

. X-Abell

Q ROSAT

7 O Abed

_._ _ _ro=0.4 d e

O
n--4

(D

0 20

I ' I ' 1,4, , i

T

I , I , I

40 60 80

dc (h-I Mpc)

Figure 4. The quantity r0 (the correlation length) plotted

against cluster space density for a number of observed cluster

samples (see text). Error bars represent the I a error on the mean.
The solid line shows the relation r0 = 0.4de of Bahca_ & West

(1992).

broadly compatible with 7 for the rich sample, C. The slope

of _c¢(r) seems to be steeper than that normally quoted for

the correlation function of galaxies (7 "_ 1.8 see eg. Davis K:

Peebles 1983).

4 DISCUSSION

4.1 Comparison with results for other cluster

catalogues.

A plot of r0 versus dc for various observational s_mples

of clusters including the APM samples (taken from Table

2 above and DEMS92 and labelled APM and APM92 re-

spectively), is shown in Fig 4. For the maximum likelihood

points, the errors are l_r for marginalisation of r0 over all

values of 7. The APM92 points are for 7 constrained to

be 2.0. The points labelled 'Abell' indicate the results for

Abel] R >__0 , Abel] R > 1 and Abell R > 2 clusters de-

rived by Peacock gz West (1992). The point labelled EDCC

is the result for 79 clusters from the Edinburgh-Durham

Cluster Catalogue of Lumsden et al. (1992) estimated by

Nichol et al. (1992). The error bar size was estimated us-

ing bootstrap resamplings. The same is true of the error on

the point labelled X-AbeU, which was estimated by Nichol,

Briel & Henry (1994), from 67 clusters in the redshift sample

of Huchra et al. (1990) which also have X-ray luminosities

> 1043 erg s -1. The point labelled ROSAT shows r0 for

_c_(r) measured from a redshift survey of an X-ray flux lim-

ited sample of clusters (Romer et al. 1994). The X-ray flux

for both these last samples was measured using the ROSAT

satellite.

It can be seen that most of the data points are for clus-

ter samples with d_ in the range 30- 55 h -1Mpc, and that

in this range, the results for the X-ray samples and auto-

mated galaxy surveys are in agreement with one another,
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Figure 3. Contours resulting from maximum likelihood analysis of cluster pair separations in order to find the most probable values of
r0 and -y. The best fit values of these two parameters are shown by a cross in each plot. The contours enclose 68%, 95% and 99.7% of the

joint probability respectively, if the distribution of S : -2 ]n/_ follows a X 2 distribution with _,_,_,_ degrees of freedom. The different
panels show results for different subsamples of clusters, with varying lower richness limits. Panel (a) shows results for the extended

sample of 364 clusters of Dalton et al. 1994a. Panel (b) shows results for the clusters in sample B with 7¢ > 80. In panels (c) to (f) we use

the new rich sample (C) that forms the subject of this paper. In each case the lower richness limit and the resulting mean intercluster
separation dc are shown in the top right of the panel, incompleteness. The dashed lines show the relation r0 : 0.4de of Bahcall & West
(1992).

Table 3. ro vs. dc for different samples of APM clusters.

Number of h -z Mpc h -1Mpc h -1Mpc
Sample clusters de r0 -b l_r r0 4- 2_ -_ 4- l_r "y ± 2a

B 7"4.> 50 364 30 14.9+0-4 14._+o.s 2 tq+°'°9 2 1_+0.16- --o.6 --_.o .... -o.os • "_-o._4
B T¢ > 70 114 48 16 6+I "3 16 6 +2.6 2 1+0.2 2.1+0.3- " - . • -2.6 -*-0.2 *-0.3
C T¢ > 80 110 57 18 4+2.2 18 4+4.2 1.7 +0.3 1 7+o.6

-- " --2.4 " --5.1 ---0.3 "---0.6

c n _>
C 7_ > 100 29 79 18 4 +4"s 18.4+_°_ 2 2 _+o.8 2 8+_ "8-- " --4.8 . "'_--0.6 " -- .1

C 7Z > II0 17 86 21 3 +5.3
-- " --0.6 " --I.I

and lower than those for Abel] clusters. As has been de-

tailed previously, this can be understood as being due to

non-uniformities in the Abel] catalogue which artificially

boosts the amplitude of clustering. Over this small range

in cluster space density, for which the errors are compara-

tively sma_, there is not much evidence for any trend of ro

with dc and hence cluster richness. Part of the reason for the

work in this paper was to find out whether this is also true

at higher richnesses and lower space densities. The sohd line

in the plot corresponds to the sc_ng relation ro = 0.4de
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proposed by Bahcall & West (1992) as a fit to the correla-

tion functions of the Abell sample. As can be seen from the

plot, the motivation for assuming this fit at high values of

dc was provided by the results for Abell R >__2 clusters (a

sample of 42 clusters was used to calculate this data point

- see Peacock & West I992).

Now that we have a sample of very rich clusters taken

from a catalogue which is demonstrably free of artificial in-

homogeneities, we are in the position to test equation (2)

using the APM data alone. The three APM points on the

right of the plot are for T¢ >_ 90, T¢ ___ 100 and 7_ >__ 110

clusters, which have space densities comparable to that of

the Abell R > 2 clusters. If the error bars are taken at face

value, then the relation would appear to be ruled out at the

,_ 2a level. However, as we have seen from Table 1, the error

bars could be underestimates by a factor of _ 1.1- 2.1. Also,

the space densities of clusters used to derive de values are

not precise estimates because of the difficulties involved in

estimating the completeness of richness limited cluster cat-

alogues (see Efstathiou et al. 1992). That said, we believe

that these data points are more reliable than those for the

Abell R > 2 clusters. Table 2.1 also shows us that the error

bars for the richest sub-samples are likely to be the most

accurate. In summary, the APM points are consistent with

a weak dependence of clustering on richness. We find no ev-

idence that equation (2) applies to rich clusters of galaxies,

with important implications for theories of structure forma-
tion as described in the next section.

1 __ LcoMdo-00h-' pc

2 5 I0 20 50 100

s (h-1 Mpc)

Figure 5. The two-point correlation function of simulated clus-

ters in the LCDM model in redshift space for subsaznples with

three different mean separations. The APM results from Figure 2

(solid symbols, computed using the estimator of Equation 4) are
also shown.

4.2 Comparison with model predictions.

Croft & Efstathiou (1994) examined the behaviour of r0

with dc expected in several popular cosmological scenarios

(see also Bahcall & Cen 1992, Mann, Heavens & Peacock

1993). The box size (300 h-lMpc) of the dissipationless N-

body simulations used in that study, meant that the pre-

dictions did not extend to the large values of dc needed to

make comparisons with our new rich cluster sample. We

have therefore run a set of simulations (using the same

particle-particle particle-mesh N-body code) with box size

600 h -1Mpc and 4 x 106 particles. These simulations are the

same as those used in Croft 8c Efstathiou (1995). The mod-

els we shall consider are the Standard CDM model (SCDM

has F = f_h = 0.5 and f2 = 1)and the spatially flat Low

density CDM model (LCDM has F = 0.2, _ = 0.2 and

_A = 0.8). Both models are normalised to be compatible

with the first year COBE anisotropies (Wright et al. 1994)

so that a8 - 1.0 for both models, where a8 is the rms ampli-

tude of linear fluctuations in 8 h -1Mpc spheres. The results

are insenstive to the precise value of as . We use the same

techniques as in Croft & Efstathiou (1994) and Dalton et al.

(1994a) to find clusters in the simulations. This involves find-

ing cluster centres in real space with a percolation algorithm

and then ordering clusters by the mass contained within a

certain radius, in this case 0.5 h -1Mpc. We then calculate

r0 for clusters with different lower mass limits, with the re-

suits shown in Figure 5. We have chosen to calculate the

correlation functions in redshift space, for more accurate

comparison with the observations. The v_ues of r0 which

we present below are _ 1 h-lMpc larger than the values

estimated in real space.

The correlation functions for the LCDM model are

shown in Figure 5, together with the APM points (estimated

using Equation 4). The space densities of the simulated clus-

ters were selected to be close to those for the three subsam-

ples of rich APM clusters plotted. The curves plotted are

the averages of results for 10 simulations of LCDM. We can

see that the APM results are compatible with LCDM model.

We can also see that the clustering strength of LCDM clus-

ters increases only a small amount as the richness bound is

increased.

In order to see how the clustering results are affected by

the mask and selection function, we have plotted the results

for the mock APM cluster catalogues constructed from 10

LCDM simulations and described in Section 3.1. The results

are shown in Figure 6 in the form of a scatter plot. In each

panel we plot r0 against 7 (both measured from the maxi-

mum likelihood technique). We show results calculated from

clusters with the same d_ values as those in Figure 5. We

also plot points for the APM results for equivalent richess

clusters. In each of the panels we can see that the APM

results are not extreme outliers and it looks plausible that

they could have been drawn from the same distribution as

the LCDM points. A line denoting the relationship of equa-

tion 2 is drawn on each panel. From this we can conclude
that in an LCDM Universe we would have a ,,_ 10% chance

for each richness cut of measuring a value of r0 which fits

this relationship.

In Figure 7 we plot r0 measured from the correlation

functions of the LCDM and SCDM clusters against de. The

error bars on the simulation points were calculated from
the let error on the mean taken from 3 simulations of each

model. We therefore have 2.4 times as many clusters of

any given space density as in the ensembles of Croft _ Ef-

stathiou (1994). We also plot the values of r0 calculated
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Figure 6. Values of r0 and _ measured from mock catalogues

constructed from 10 simulations of an LCDM universe (see text).

Plotted are results for clusters with three different mean sepa-

rations. The corresponding APM results from Figure 3. are also
shown.

using the maximum hkehhood method in this paper. The

plots shows the very weak trend of clustering strength with

cluster richness continuing for both models at ]east up to

r - 80 h-lMpc. The APM points are consistent with the

LCDM model, but not with SCDM. We note here that a

simulation with a different amplitude of clustering in the

underlying mass could have an r0 which differs by as much

as 1 - 3 h -1Mpc as could clusters which are selected using

a different method. These variations are not expected to be

large enough to affect our conclusions (Croft 8z Efstathiou

1994), Eke et al. 1996, Mo, Jing K: White 1996).

It is encouraging that models with P _ 0.2, which were

introduced to explain clustering in the galaxy distribution

(see eg. Efstathiou, Sutherland _ Maddox 1990) are also

able to match well the clustering of rare and extreme objects

such as the rich galaxy clusters considered here. We also

expect other Gaussian models with similar power spectra

O

o

7
v

o

O

O

' I ' I ' W ' i

• APM

_ _LCDM /

_._SCDM / :
lr 0=0.4 d o . .

i

0 20 40 60 80

d c (h -1 Mp,c)

Figure 7. A comparison of the richness dependence of APM clus-

ter correlations (_ed circles) with the corresponding pre_ctions

for a low density CDM Model (dashed fine) and Standard CDM
(dot-dashed) line. The theoretical predictions have been calcu-

lated in redshift space. Error bars represent the 1 cr error on the

mean. The solid line shows the relation r0 = 0.4dc of Bahcall &

West (1992).

such as a Mixed Dark Matter (MDM) universe dominated

by CDM and with an additional component of massive neu-

trinos (see eg. Klypin etal. 1993) to be compatible with our

APM results at high richnesses, as they are at low richnesses

(Dalton et al. 1994a). From Figure 7 we can also see that

whilst models such as low density CDM provide a good fit

to the clustering behaviour of rich APM clusters they are

completely incompatible with the scaling relation derived

from considering rich Abe]] clusters. Our data exclude such

a strong scaring relation and remove the need to resort to

non-Gaussian models for the formation of large-scale struc-

ture.

5 SUMMARY

We have carried out a new extension of the APM clus-

ter redshift survey to provide a sample of 165 clusters

with richnesses 7_ _> 80 and mean space density of 5.4 x

10 -6 h -1Mpc -s. The correlation function of this sample is

found to be consistent with the clustering amphtude mea-

sured for our previous larger sample of poorer APM clusters.

Restricting the evaluation of _cc(r) to even richer subsamples

shows that there is only a weak dependence of correlation

length with cluster richness. This is disagrees with results

from Abell R > 2 clusters. The high amplitude of _cc for

the Abel] R _ 2 sample is most probably caused by inhom-

geneities in the Abell catalogue. The weak dependence of

clustering strength with richness that we find in the APM

survey is however in good agreement with what is expected

in a universe with Gaussian initial fluctuations and a power

spectrum with more large-scale power than standard CDM,

such as low density CDM or MDM.
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